Production of Drug Nanoparticles of Controllable Size Using Supercritical Fluid Antisolvent Technique with Enhanced Mass Transfer

ثبت نشده
چکیده

The use of supercritical fluids in the area of material processing and for particle formation has been known for several years now. The advantages of supercritical fluid processing include mild operating temperatures, production of solvent free particles and easy micro encapsulation of particles. One of the attractive methods of particle processing using supercritical fluid is the Supercritical Antisolvent (SAS) technique. Although this technique has numerous advantages, it still cannot produce fine particles in the sub-micron range (<300 nm) for soft materials. A significant improvement in the SAS process has been proposed in this work, to obtain particles of controllable size that are up to ten-fold smaller and have narrower size distributions. Like the conventional SAS technique, the new technique Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) also utilizes supercritical carbon dioxide as the antisolvent, but in this case the solution jet is deflected by a surface vibrating at an ultrasonic frequency, that atomizes the jet into much smaller droplets. Furthermore, the ultrasound field generated by the vibrating surface enhances mass transfer and prevents agglomeration through increased mixing. The particle size is easily controlled by varying the vibration intensity of the deflecting surface, which can be adjusted by changing the power supplied to the attached ultrasound transducer. This new technique is demonstrated by the formation of nanoparticles of different pharmaceuticals such as lysozyme, tetracycline and griseofulvin. INTRODUCTION Nanoparticles are important in developing delivery systems for controlled release of drugs. These systems can improve the therapeutic efficacy of drugs, in-vitro and in-vivo stability, bioavailability, targetability, and bio-distribution to reduce toxicity [1]. The delivery systems involving nanoparticles studied so far include, polymer nanoparticles with the drug dispersed within the polymer matrix, drug nanoparticles coated with a biodegradable polymer, polymer nanoparticles with the drug adsorbed on the surface, and nanoparticle suspensions for poorly soluble drugs [2]. There have been several methods in the past for the manufacture of drug nanoparticles. Some of the conventional techniques include spray drying and ultra fine milling [3, 4]. The major disadvantage of these techniques is that they produce particle having a broad size distribution (0.5 25 μm) and only a small fraction of the particles produced are in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process

Objective(S): In this work, paclitaxel (PX), a promising anticancer drug, was loaded in the basil seed mucilage (BSM) aerogels by implementation of supercritical carbon dioxide (SC-CO2) technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE). <stron...

متن کامل

Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process para...

متن کامل

Fabrication of micro and nanoparticles of paclitaxel-loaded Poly L Lactide for controlled release using supercritical antisolvent method: Effects of Thermodynamics and Hydrodynamics

This paper presents the fabrication of controlled release devices for anticancer drug paclitaxel using supercritical antisolvent method. The thermodynamic and hydrodynamic effects during supercritical antisolvent process on the particle properties obtained were investigated. Scanning electron microscopy was employed to study particle sizes and morphologies achieved. It was observed that increas...

متن کامل

Application of Supercritical Fluid ‎Technology for Preparation of Drug Loaded ‎Solid Lipid Nanoparticles

   Small changes in pressure or temperature, close to the critical point, lead to large changes in solubility of supercritical carbon dioxide (CO2). Environmentally friendly supercritical CO2 is the most popular and inexpensive solvent which has been used for preparation of nanodrugs and nanocarriers in drug delivery system with supercritical fluid technology. Delivery...

متن کامل

Particle Production by Supercritical Antisolvent Processing Techniques

This thesis discusses particle production by supercritical antisolvent processing (SAS) techniques by looking the fundamentals and applications of the method with some case studies. The final aim of this work is however to consider the SAS particle production process feasibility. In the process studied the solid is dissolved in a conventional solvent and the solution is sprayed continuously thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003